ENVÍO GRATIS - PAGO SEGURO - GARANTÍA DE DEVOLUCIÓN DE DINERO Necesitas ayuda?

Carrito de compras


New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks

por Fernando Gaxiola - Vendido por Dodax EU
Condición: Nuevo
57,18 €
IVA incluído - Envío GRATIS
Fernando Gaxiola New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks
Fernando Gaxiola - New Backpropagation Algorithm with Type-2 Fuzzy Weights for Neural Networks

¿Le gusta este producto? ¡Compártalo con todo el mundo!

57,18 € incl. IVA
Solo 1 artículos disponibles Solo 1 artículos disponibles
Entrega: entre 2021-03-09 y 2021-03-11
Ventas y envío: Dodax EU

Descripción

In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights. The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method. The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ô=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation approach obtains better behavior and tolerance to noise than the other methods. The optimization algorithms that were used are the genetic algorithm and the particle swarm optimization algorithm and the purpose of applying these methods was to find the optimal type-2 fuzzy inference systems for the neural network with type-2 fuzzy weights that permit to obtain the lowest prediction error.

Contribuyente

Autor Patricia Melin

Autor Fernando Gaxiola

Autor Fevrier Valdez

Información

DUIN 15UBH55VPCE

GTIN 9783319340869

Fecha de aparición 09.06.2016

Número de páginas 102

Product type Libro de bolsillo

Dimensión 235 x 155 x 155  mm

Peso del producto 1825 g

57,18 €
Utilizamos cookies en nuestro sitio web para que nuestros servicios sean más eficientes y más fáciles de usar. Por lo tanto, seleccione "Aceptar cookies". Lea nuestra Política de privacidad para obtener más información.