Representation Theory of Finite Monoids
¿Le gusta este producto? ¡Compártalo con todo el mundo!
Descripción
Colaboradores
Detalles de producto
Preface.- List of Figures.- Introduction.- I. Elements of Monoid Theory.- 1. The Structure Theory of Finite Monoids.- 2. R-trivial Monoids.- 3. Inverse Monoids.- II. Irreducible Representations.- 4. Recollement: The Theory of an Idempotent.- 5. Irreducible Representations.- III. Character Theory.- 6. Grothendieck Ring.- 7. Characters and Class Functions.- IV. The Representation Theory of Inverse Monoids.- 8. Categories and Groupoids.- 9. The Representation Theory of Inverse Monoids.- V. The Rhodes Radical.- 10. Bi-ideals and R. Steinberg's Theorem.- 11. The Rhodes Radical and Triangularizability.- VI. Applications.- 12. Zeta Functions of Languages and Dynamical Systems.- 13. Transformation Monoids.- 14. Markov Chains.- VII. Advanced Topics.- 15. Self-injective, Frobenius and Symmetric Algebras.- 16. Global Dimension.- 17. Quivers of Monoid Algebras.- 18. Further Developments.- A. Finite Dimensional Algebras.- B. Group Representation Theory.- C. Incidence Algebras and Möbius Inversion.- References.- Index of Notation.- Subject Index.
Accessible to a wide readership of graduate students and researchers, including non-experts in semigroups
Contains exercises, chapter notes, and thoroughly worked examples
"This is the first monograph concerned with the representation theory of finite monoids and which takes a modern module theoretic view of the subject. It intends to serve graduate students and researchers in combinatorics, automata theory and probability theory." (K. Auinger, Monatshefte für Mathematik, Vol. 188, 2019)
"The real strength of the book is that it also addresses and presents many recent applications of representation theory of finite monoids which served as motivation for many activities in the area during the last twenty years. ... this is a well-written and very timely monograph which is suitable for both advanced researchers and graduate students from a wide range of mathematical areas." (Volodymyr Mazorchuck, Mathematical Reviews, September, 2017)